Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

trans,trans-2-Cyano-5-(4-methoxy-phenyl)penta-2,4-dienethioamide

Vladimir N. Nesterov, ${ }^{\text {a,b }}{ }^{\text {b }}$ Mikhail Yu. Antipin, ${ }^{\text {a,b }}$
Tatiana V. Timofeeva ${ }^{\text {b }}$ and Ronald D. Clark ${ }^{\text {b }}$

${ }^{\text {a }}$ Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow, Russian Federation, and ${ }^{\mathbf{b}}$ Department of Physical Sciences, New Mexico Highlands University, Las Vegas, NM 87701, USA
Correspondence e-mail: vlad@kremlin.nmhu.edu

Received 1 September 1999
Accepted 12 October 1999
The title compound, $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$, was prepared by condensation of 4-methoxycinnamaldehyde and thioacetamide in ethanol at room temperature. Its investigation was undertaken as part of our search for new non-linear optical compounds. The π-conjugated title molecule is almost planar, the dihedral angle between the central planar 2-cyano-5-(4-methoxy-phenyl)penta-2,4-diene fragment and the thioacetamide group being $9.2(6)^{\circ}$. Molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds forming a two-dimensional motif.

Comment

Structural studies of polarized organic molecules as components for non-linear optical (NLO) and photorefractive materials have attracted a great deal of attention in the last two decades [see, for instance, Zyss (1994)]. The present work is part of a continuing project on the synthesis, structure investigation and property evaluation of potential NLO compounds. Recently, we investigated a series of polarized molecules having a dicyanovinyl acceptor part and various donors connected by π-conjugated chains of different lengths. There are derivatives of 2-aryl-1,1-dicyanovinyl and 4-aryl-1,1-dicyano-1,3-butadiene (Antipin et al., 1997; Antipin, Clark et al., 1998; Antipin, Timofeeva et al., 1998; Timofeeva et al., 1999). We present herein a structural investigation of the title compound, (I), whose molecules have another type of acceptor group.

(I)

According to our quantum-chemical calculations [using modified MOPAC and HYPER programs (Cardelino et al., 1991, 1997)], the molecular hyperpolarizability of (I) is equal to $142 \times 10^{-51} \mathrm{C} \mathrm{m}^{3} \mathrm{~V}^{-2}$. This is about 40% larger than for the dicyanovinyl analogues (Antipin, Clark et al., 1998).

The molecule (Fig. 1) contains an almost planar fragment consisting of p-methoxyphenyl and 1-cyano-1,3-butadiene moieties, with a dihedral angle between them of 1.7 (2) ${ }^{\circ}$. The maximum deviation from the least-squares plane passing through all non-H atoms of this fragment is 0.031 (3) \AA. The 1-cyano-1,3-butadiene fragment in (I) is planar despite the shortened $\mathrm{H} 6 A \cdots \mathrm{H} 8 A \quad[2.196$ (6) \AA A $]$ and $\mathrm{H} 8 A \cdots \mathrm{C} 12$ [2.577 (6) \AA] intramolecular contacts; the corresponding van der Waals radii sums are 2.20 and $2.87 \AA$, respectively (Rowland \& Taylor, 1996). The thioacetamide group is slightly out of the above-mentioned planar fragment, with a dihedral angle of $9.2(6)^{\circ}$ between the two.

Bond lengths in (I) do not differ significantly from those of 4-aryl-1,1-dicyano-1,3-butadiene (Antipin, Clark et al., 1998). In the 1,3-butadiene fragment, the observed bond length

Figure 1
View of the title molecule with the atom-numbering scheme. The non-H atoms are shown with 50% probability displacement ellipsoids. H atoms are drawn as circles of small arbitrary radius for clarity.

Figure 2
Projection onto the $b c$ plane showing the hydrogen-bonding scheme. [Symmetry codes: (i) $1-x, 2-y,-z$; (ii) $x-\frac{3}{2}, \frac{3}{2}-y, \frac{1}{2}+z$.]
alternation [for standard bond lengths see Allen et al. (1987)] indicates π-conjugation in this system.

In the crystalline phase, molecules of (I) are linked by hydrogen bonds forming a two-dimensional motif (Fig. 2). Both H atoms of the amino group are involved in hydrogen bond formation, one with the O atom of the methoxy group and the other with the N atom of the cyano group of a neighboring molecule.

Compound (I) crystallizes in a centrosymmetric space group and this phase therefore cannot exhibit second-order NLO effects, but the compound may do so when incorporated into a suitable liquid crystalline or polymer matrix.

Experimental

The title compound was obtained by the reaction of 4-methoxycinnamaldehyde $(0.81 \mathrm{~g}, 5 \mathrm{mmol})$ with thioacetamide $(0.50 \mathrm{~g}$, $5 \mathrm{mmol})$ in the presence of a catalytic amount of morpholine (0.1 ml) in ethanol $(20 \mathrm{ml})$ at room temperature. The precipitate which separated from the solution was recrystallized from ethanol (30 ml) (m.p. 458-459 K; yield $0.93 \mathrm{~g}, 76 \%$). Yellow crystals were obtained by isothermal evaporation from a solution of (I) in ethanol.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$
$M_{r}=244.31$
Monoclinic, $P 2_{1} / n$
$a=6.4590$ (13) A
$b=15.662$ (3) \AA
$c=12.276$ (3) \AA
$\beta=95.51$ (3) ${ }^{\circ}$
$V=1236.1$ (4) \AA^{3}
$Z=4$

$$
\begin{aligned}
& D_{x}=1.313 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 24 \\
& \text { reflections } \\
& \theta=11-12^{\circ} \\
& \mu=0.246 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Prism, yellow } \\
& 0.45 \times 0.30 \times 0.25 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4 diffract-	$\theta_{\max }=26.96^{\circ}$
\quad ometer	$h=0 \rightarrow 8$
$\theta / 2 \theta$ scans	$k=0 \rightarrow 19$
2922 measured reflections	$l=-15 \rightarrow 15$
2688 independent reflections	3 standard reflections
1283 reflections with $I>2 \sigma(I)$	every 97 reflections
$R_{\text {int }}=0.112$	intensity decay: 5%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.076$
$w R\left(F^{2}\right)=0.201$
$S=1.334$
2655 reflections
162 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1213 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.32 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}$

The two amino H atoms were located from a difference Fourier map and were refined isotropically. All other H atoms were positioned geometrically and thereafter refined using a riding model.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: SHELXTL-Plus (Sheldrick, 1994); program(s) used to solve structure: SHELXTLPlus; program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXTL-Plus.

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

S1-C11	$1.653(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.344(6)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.361(5)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.424(6)$
$\mathrm{O} 1-\mathrm{C} 13$	$1.425(6)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.351(6)$
$\mathrm{N} 1-\mathrm{C} 12$	$1.143(6)$	$\mathrm{C} 10-\mathrm{C} 12$	$1.425(6)$
$\mathrm{N} 2-\mathrm{C} 11$	$1.312(5)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.483(6)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.435(6)$		
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 13$			
$\mathrm{C} 11-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N}$	$117.5(4)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$122.7(4)$
$\mathrm{C} 11-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	$123(3)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$126.2(4)$
$\mathrm{H} 1 \mathrm{~N}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	$117(3)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 12$	$118.2(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$120(4)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$123.4(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$117.1(4)$	$\mathrm{C} 12-\mathrm{C} 10-\mathrm{C} 11$	$118.4(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$123.6(4)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 10$	$115.5(4)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$119.3(4)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{S} 1$	$122.7(3)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$125.5(4)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{S} 11$	$121.8(3)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 1$	$115.2(4)$	$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 10$	$179.3(5)$
$\mathrm{C} 13-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$126.6(4)$		
$\mathrm{C} 13-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$		$0.1(6)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$-179.6(4)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 2$	$179.9(4)$
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-179.9(4)$	$\mathrm{C} 12-\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 2$	$-170.5(4)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$180.0(4)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{S} 1$	$7.1(6)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 12$	$179.6(4)$	$\mathrm{C} 12-\mathrm{C} 10-\mathrm{C} 11-\mathrm{S} 1$	$-171.4(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H1N $\cdots \mathrm{N} 1^{\mathrm{i}}$	$0.92(5)$	$2.18(5)$	$3.042(5)$	$155(4)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O}^{\mathrm{ii}}$	$0.83(5)$	$2.27(5)$	$3.035(5)$	$153(4)$

Symmetry codes: (i) $1-x, 2-y,-z$; (ii) $x-\frac{3}{2}, \frac{3}{2}-y, \frac{1}{2}+z$.

This work has been supported in part by NASA IRA grant NAG56532 and AFOSR grant F49620-97-1-0256.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1375). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Antipin, M. Yu., Barr, T. A., Cardelino, B. H., Clark, R. D., Moore, C. E., Myers, T., Penn, B., Romero, M., Sanghadasa, M. \& Timofeeva, T. V. (1997). J. Phys. Chem. B, 101, 2770-2781.

Antipin, M. Yu., Clark, R. D., Nesterov, V. N., Sanghadasa, M., Timofeeva, T. V. \& Lyssenko, K. A. (1998). Mol. Cryst. Liq. Cryst. 313, 85-94.

Antipin, M. Yu., Timofeeva, T. V., Clark, R. D., Nesterov, V. N., Sanghadasa, M., Barr, T. A., Penn, B., Romero, L. \& Romero, M. (1998). J. Phys. Chem. B, 102, 7222-7232.
Cardelino, B. H., Moore, C. E. \& Frazier, D. O. (1997). J. Phys. Chem. A, 101, 2207-2214.
Cardelino, B. H., Moore, C. E. \& Stickel, R. E. (1991). J. Phys. Chem. 95, 86458652.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Rowland, R. S. \& Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.
Sheldrick, G. M. (1994). SHELXTL-Plus. PC Version 5.02. Program Package for Crystal Structure Solution and Refinement. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
Timofeeva, T. V., Nesterov, V. N., Antipin, M. Yu., Clark, R. D., Sanghadasa, M., Cardelino, B. H., Moore, C. E. \& Frazier, D. O. (1999). J. Mol. Struct. In the press.
Zyss, J. (1994). Molecular Non-linear Optics: Materials, Physics and Devices, p. 479. New York: Academic Press/Harcourt Brace and Jovanovich.

